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ABSTRACT 

We use a 3-D Cartesian resistive  MHD  code to investigate  3-D  aspects of 

the  interaction of magnetic flux tubes as observed in the solar  atmosphere 

and  studied  in  laboratory  experiments. We present  here the first results 

from  modeling the reconnection of two  Gold-Hoyle magnetic flux tubes which 

follow the  system evolution to a final steady  state.  The  energy evolution and 

reconnection rate for flux tubes  with  both  parallel  and  antiparallel  axial fields 

and  with  equal  and  nonequal  strengths  are  studied. For the first time, we 

calculate a gauge-invariant  relative magnetic helicity of the  system  and  compare 

its evolution for all  the  above cases. We observed that  the  rate at which  helicity 

is dissipated  may  vary significantly for different cases, and  it  may  be  comparable 

with  the  energy  dissipation  rate.  The  footpoints of the  interacting flux tubes 

were held fixed or allowed to move to  simulate different conditions in the solar 

photosphere.  The cases with fixed footpoints  had lower magnetic  energy release 

and  reached a steady  state faster than cases with moving footpoints. For all 

computed cases the  magnetic energy was released mostly  through work done 

on the  plasma by the  electromagnetic forces rather  than  through resistive 

dissipation. The reconnection rate of poloidal  magnetic field is  faster for the case 

with  antiparallel flux tubes  than for the case with  parallel flux tubes, consistent 

with  laboratory  experiments. We find that  during reconnection  supersonic 

(but subalfvenic) flows develop, and  it  may  take a considerably longer time 

for the  system  to  reach a steady  state  than for magnetic flux to reconnect.  It 

is necessary to  retain  the pressure gradient in the  momentum  equation;  the 

plasma pressure  may be significant for the final equilibrium  steady  state even 

with  low-beta  initial  conditions. 
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1. Introduction 

The  interaction of magnetic  flux  tubes  as a source of activity is widely discussed in 

astrophysics.  Solar phenomena  such  as  coronal  mass ejections and  solar flares,  which are 

responsible for sudden release of energy  into  the  solar  corona  and  the  solar  wind,  are 

associated  with  magnetic  loop  interactions in the solar atmosphere.  Magnetic  reconnection 

is an  important  part of this  interaction. 

Magnetic  reconnection  changes the configuration of the  magnetic field and allows the 

release of magnetic  energy  into  kinetic  and  thermal  energy of the  plasma.  It is generally 

accepted that  magnetic  reconnection  can  be  studied  with resistive magnetohydrodynamic 

(MHD)  models  and  it  has  been extensively studied  using 2-D MHD  models. However, 

real magnetic field configurations in  solar  and  astrophysical  plasmas have complex  3-D 

topologies.  Much of the  magnetic field of the solar corona is in the form of magnetic flux 

tubes  with  twisted field lines  (Canfield et al. 1996; Rust & Kumar  1994).  Frequent  transient 

X-ray brightenings in  solar  active  regions have been linked to local plasma  heating  due  to 

the  interaction of magnetic  loops  (Shimizu  et  al.  1994). Yohkoh soft  X-ray observations 

provided  evidence of magnetic  reconnection in the  quiet  corona  resulting in a large scale 

rearrangement of magnetic  structures  and significant heating of the  plasma  (Tsuneta  1996). 

Recent  laboratory  experiments  (Yamada  et al. 1997) have provided  evidence of some 

important 3-D features of magnetic reconnection. In  particular,  the  reconnection  rate  and 

the final field configuration are  to a large  extent  dependent on the  initial configuration of 

the  magnetic field, i.e.,  whether flux tubes have the  same or opposite helicities. 

Numerical  models  represent a valuable  tool in understanding 3-D magnetic 

reconnection effects, complementing  experimental  studies. Recently,  several important 3-D 

MHD numerical  studies of magnetic  reconnection  between flux tubes have been performed. 

Dahlburg & Antiochos  (1995)  performed a 3-D numerical  simulation of the reconnection 
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of antiparallel flux tubes  with  only  an  axial  component of the  magnetic field (no  twist). 

They observed that,  after  the  reconnection,  the original  two flux tubes  had  divided  into 

four flux tubes. Fushiki & Sakai (1995) used a simplified analytical  model of a coronal flux 

tube,  the Gold-Hoyle (1960) solution, in  which loop  curvature is neglected, but  twist is 

retained.  They  investigated  plasmoid  generation  during  the  reconnection of two Gold-Hoyle 

flux tubes  immersed  in a plasma of uniform  pressure and  density  and identified complete 

and  partial  reconnection,  depending  on  whether  the  axial  magnetic field components of two 

tubes  are  parallel or anti-parallel.  Lau & Finn (1996) used a 3-D  MHD model to analyze 

topological  changes  in the field lines  in  reconnection  between  either  parallel  or  antiparallel 

flux tubes  created  from  an  initially  potential field by twisting  the  loop  footpoints.  Ozaki & 

Sat0 (1997) used an  incompressible  3-D  MHD  code to  study  the reconnection of magnetic 

loops and  arcades  created by twisting  the  footpoints of potential field arcades. 

We present  here our  results  from 3-D  resistive  MHD  modeling of the  interaction of 

two  Gold-Hoyle magnetic flux tubes  in a low beta uniform  plasma. The  purpose of our 

studies is to  expand  existing work on  3-D  reconnection to  capture  both  the  dynamics of 

the  interaction  and  the final steady-state  solution. We use a comprehensive 3-D MHD 

code MAP3 (Kondrashov & Keefer 1997) and  do  not  make simplifications adopted in the 

previous studies  on  magnetic  reconnection in the solar  corona.  In  Ozaki  and  Sat0  (1997), 

the  plasma pressure gradient in the  momentum  equation  and compressibility effects were 

neglected. Lau & Finn (1996) retained compressibility, but neglected the pressure gradient. 

Both effects were found to be  important  in  the  present  studies. We analyze  magnetic 

field configurations resulting  from  the  reconnection of flux tubes  with  either  parallel or 

antiparallel  axial fields and  with  equal  absolute field magnitudes.  Such cases were studied 

experimentally  and were  identified as either cohelicity or counterhelicity  reconnection 

(Yamada  et  al.  1997). We also investigate a case with  nonequal  magnitudes  (10% difference) 

of antiparallel  flux  tubes, for which  no published  experimental  results have been  reported. 
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Computational  solutions  are  obtained  with  two  sets of the  boundary  conditions: a) moving 

footpoints of the flux tubes, for which  reconnection  can  take place along  all  the  axial  length, 

and  b) fixed footpoints, when  reconnection  takes  place  in the vicinity of the  midplane of 

the  computational  domain.  In general the cases with fixed footpoints  had lower magnetic 

energy release and  reached a steady  state  faster  than cases with moving footpoints. For all 

computed cases the  magnetic  energy was released mostly  through work done on the  plasma 

by the  electromagnetic forces rather  than  through resistive  dissipation. 

The cohelicity  case involves reconnection and  merging of flux tubes  with  the  same sign 

of twist.  One  question is whether  the  twist of the  initial flux tubes will add  to  produce a 

flux tube  with  the  twist exceeding the  limit of the kink  instability.  Observational  studies 

of coronal structures  provided  some  evidence for such  phenomenon  (Pevtsov & Canfield 

1996). We find that  with moving footpoints  the two flux tubes merge into  one flux tube 

which has less twist  and is more  stable.  Our  calculations show that  strong  supersonic 

(though subalfvenic) flows develop  during  reconnection which  prolong the  system  transition 

to a steady  state.  The pressure gradient in the  momentum  equation  can  be  important for 

final equilibrium even for the low-beta  initial  conditions  and it is necessary to  retain  it in 

the  model. For the  equal  strength  counterhelicity  case,  the final magnetic configuration 

has no axial field, i.e., the pressure of poloidal  magnetic field is balanced by the high beta 

plasma pressure within  the  tube.  Thus a low-beta  initial configuration has  transformed  to 

high-beta  configuration. 

We performed  computational  tests to investigate  the influence of numerical  resistivity, 

and chose a grid for which the resistivity is dominated by its value specified in the code, and 

not by the  numerical resistivity. We verified the code  on  test  simulations of the  stability of 

Gold-Hoyle flux tubes  and  obtained  satisfactory  agreement  with previous numerical  studies 

(Mikic et al. 1990). 
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We obtain  qualitative  agreement  with  experimental  results by Yamada  et  al. (1997) on 

3-D effects of magnetic reconnection. We observed that reconnection  proceeds  faster  in the 

counterhelicity  case than in cohelicity merging,  consistent with  the  laboratory  experiments. 

The reconnection  rates of poloidal magnetic field are in the  range between rates predicted 

by Sweet-Parker  and  Petschek  models. 

2. Numerical Model 

2.1. Governing Equations 

We modeled the  plasma  as a continuous  compressible  magnetized fluid with  mass 

density p ,  velocity v and specific internal  energy e. Equations  governing  plasma  motion in 

the Navier-Stokes formulation include the  electromagnetic force J x B and J . E: 

dP 
at 

at 

- 

dpv 

a PV2 
+ 7) 

The pressure is calculated  from  the 

+ v - p v =  0, 

+ V . p v v = J x B - V p ,  
n 

ideal equation of state  with a specific heat  ratio y: 

We use a Cartesian 3-D  MHD  code, MAP3  (Kondrashov & Keefer 1997), to  compute 

magnetic field and  plasma  evolution. MAP3 is a compressible  code  and  the  term Vp in 
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the  momentum  equation is retained.  MAP3  employs a finite-volume technique to  obtain  a 

conservative numerical  scheme.  Plasma flow equations  Eq. (1-3) are  advanced  in  time by an 

explicit algorithm  based  on  the  2nd-order Van Leer scheme. 

Unlike most 3-D  MHD  codes, MAP3 uses the  magnetic vector potential A to represent 

the  magnetic field B and  electric field E: 

dA 
at 

E=--, B = V x A .  

In  this  formulation  the  divergence  condition V . B = 0 is always  satisfied,  which is important 

for obtaining a physically correct  solution.  This choice of variables is a major  advantage 

of MAP3 over other 3-D MHD codes  which  employ the  magnetic field as a primitive 

variable. In  these  codes,  special  complex  computational  procedures  are required to meet  the 

V . B = 0 constraint.  Electromagnetic variables in MAP3  are defined on a staggered  grid, 

for which the  condition V B = 0 holds  with  computer precision.  Such a layout  results  in 

a conservative numerical  scheme of 2nd  order  spatial accuracy.  Using the  simplest  form of 

Ohm’s law, the  magnetic vector potential evolution  in the code is described by the following 

equation 
8A 
at PO 

V X B = - V X V X A  rl 
” 

where 7 is the electrical  resistivity, and po  is the vacuum  magnetic permeabiliy. The v X B 

term describes the convection, and  the  term (q/pO)V x V x A describes the diffusion. Both 

terms  are  calculated  explicitly  on a staggered  grid.  The  magnetic  Reynolds  number is the 

ratio of the convection  term to  the diffusion term.  It is also  called the  Lundquist  number S, 

when  based  on the Alfven speed VA: 

Our  computational  tests show that for the grids and  range of values of S we are using, the 

resistivity  in the  code  is  dominated by the  input physical  value, and  not  the  numerical 
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resistivity. These  computational  tests  are  described  in  the  Appendix. Also included  in the 

Appendix  are  results of test  simulations of the  stability of Gold-Hoyle  flux tubes used  for 

code  verification. 

2.2. Initial Conditions 

For our  initial  conditions we use the Gold-Hoyle  model  for magnetic flux tubes, which 

represents a solution for a force-free equilibrium flux tube  in a simplified geometry  (Gold 

& Hoyle 1960). In this  model  curvature of the coronal  loop is neglected, but  the twist of 

the field lines  is  retained. The field components  can  be specified in a cylindrical  coordinate 

system  as a free parameter  solution: 

The  solution for the  magnetic  vector  potential of the Gold-Hoyle field is 

The free parameter b represents a flux tube  “width”.  There is a non-zero  electrical  current 

associated  with a Gold-Hoyle solution  and  it  has  the  property  that  the  twist  angle @ of the 

field line  is independent of x and  radius r :  

The flux tube  with  tied  footpoints is  kink  unstable when @ 2 2 . 4 9 ~  (Hood  and  Priest, 

1981). We have  normalized the  fundamental  variables:  the  magnetic field by the value Bo, 

the  density by the value of po,  the pressure by the value of p0V,2/2, the velocity by the value 

of VA, the  time by the value of TA = ~ / V A ,  the  spatial  coordinates by the value of b. 

The  computational  domain is a box of the size L, = L, = 20; L,  = 2 . 5 ~  in  normalized 

units. We initialize the  computation by  placing  two  Gold-Hoyle  flux  tubes  parallel to  the 
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z-axis with  the  tube  centers  located at z1 = 7, y1 = 10 and z2 = 13, y2 = 10 respectively. 

The  initial vector potential A and  the  magnetic B fields are  computed as the  sum of 

representative fields of individual flux tubes derived  from  Eq.  (6-7): B = B1 + Bz, 

A = AI + Az. By  changing the sign for B, in Eq. (6) for one of the  tubes, we can 

specify either  parallel or antiparallel flux tubes. However the  axial electrical currents will 

be  parallel  in  all  cases, so the flux tubes will attract. By  changing value of Bo in Eq.(6) we 

control  the  strength of the flux tube. 

We compute  the  interaction of two  Gold-Hoyle  flux tubes in three cases. The first case 

is equal  parallel flux tubes (cohelicity) - when Bo has  the  same value and B, has  the  same 

sign for both flux tubes.  The second case  is antiparallel  equal flux tubes  (counterhelicity) - 

when Bo has  the  same  absolute value for both flux tubes  but B, has  an  opposite sign for 

one of the  tubes.  The  third case is nonequal  antiparallel flux tubes - when Bo has 10% 

difference in the  absolute  value  and B, has  an  opposite sign for one of the  tubes. For all 

three cases we investigated two sets of boundary  conditions, which correspond to fixed 

or  moving footpoints,  as described below. The flux tubes  are  immersed in a plasma  with 

uniform  pressure and density. We set ,Ll = 0.06, and  the electrical  resistivity is defined by 

the dimensionless  value S = b V ~ / q  = lo3.  

2.3. Boundary Conditions and Computational Grid 

For our simplified Gold-Hoyle flux tubes,  the  curvature of the two  loops is neglected 

and  the  top  and  bottom  boundaries ( x  = 0, L,) represent pieces of the solar  photosphere 

surface.  At these  boundaries no mass flux is allowed,  i.e. V, = 0. Footpoints of the 

flux tubes  can  be fixed or allowed to move along  the  top  and  bottom  boundaries.  These 

two cases reflect two different physical conditions of the  photospheric  plasma.  The flux 

tubes  can  be  brought  together by the convective motion of the  photospheric  plasma;  this 
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corresponds to  the moving footpoints case  in our  model.  With  no convective motion, we 

have the case of fixed footpoints frozen into  the  dense  photospheric  plasma.  In  the case of 

fixed footpoints,  the  reconnection between the flux tubes  takes  place  only  in  the  vicinity of 

the  mid  z-plane.  With moving footpoints  reconnection  takes  place  along the whole  axial 

length. 

To  study  these  two cases  different boundary  conditions  are used  for tangential 

components V, and A, on the  top  and  bottom  boundaries.  Fixed  footpoints  are  obtained 

by imposing a perfectly  conducting  boundary  condition 

E r -  at = 0, v, = 0. 

The  boundary  conditions  for  moving  footpoints  are 

On  the side  boundaries we impose  perfectly  conducting  boundary  conditions  for the 

electromagnetic field and  a  no  mass flux condition for the  plasma flow (V, = 0) for all cases. 

Three  computational  grids have  been  used: fine - 350x350~20,  medium - 200x200~20  and 

coarse - 100x100~20. Uniform  grid spacing  has  been used for all  runs  because we find that 

fine-scale phenomena  may  occur  anywhere  within  the  computational  domain. 

2.4. Magnetic Helicity 

Magnetic  helicity, which characterizes the  twist of magnetic  lines in a flux tube,  the 

writhe  (kink) of its axis  and/or  links between  different  flux tubes, is  one of the most 

interesting  and  important  features of the 3-D interaction. However the  usual  form of the 

magnetic  helicity J A BdV is not useful for studying  the  interaction of flux tubes  in  the 

solar  atmosphere.  This  form is  gauge  invariant  only if B, = 0 on  all  surfaces  surrounding 
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the flux system  (for  example closed flux tubes).  This  condition is  obviously not valid  for 

magnetic  loops  with  footpoints  on  the  photosphere. To  overcome this difficulty,  Berger 

& Field  (1984) introduced a gauge  invariant  concept of magnetic  helicity of a given 

configuration  which  is  defined  relative to a reference (potential) field. 

We investigate  the  evolution of the  relative  magnetic helicity  using a compact  form 

suggested by Finn & Antonsen  (1985): 

H = /(A + AP)(B - Bp)dV, (9) 

where AP,  BP define a potential  (current-free) field with known l?; on the  boundaries of 

the  computational  domain.  The reference field makes the helicity gauge  invariant.  The 

equation for the  time evolution of H can  be  derived  using Maxwell’s equation  and  Ohm’s 

law (Finn & Antonsen  1985) : 

E = - 2 / ( E - B - E P . B P ) d V + / ( A + A P ) x ( E - E P ) . d S  at (10) 

Here V x EP = -aBP/dt. One  can  further  expand  the  non-potential  terms  in  Eq.(9) for 

no-mass  flux  boundaries (Vn = 0), and write: 

/ ( A .  v)(B dS) + ... at (11) 

The first and second  terms  represent helicity  decay  by Ohmic  dissipation.  Helicity  can also 

be  injected  into  the  system by the  tangential  plasma flow on the  boundaries  represented 

by the  third  term  in  Eq.(ll), e.g.  via  footpoint  motion. For the  calculation  with fixed 

footpoints,  this  term  vanishes,  and  helicity  can  only  dissipate resistively. We use this  to 

assess the influence of the numerical  resistivity  on the  solution since the  dissipation  rate of 

H  is proportional to   the effective value of resistivity  in the code  (see Appendix). 

To compute H from Eq.(9),  the  potential field BP = V x AP consistent  with  the 

boundary  conditions of our  numerical  solution  must  be  determined.  On  the  top  and  bottom 
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boundaries we set BE equal to  the value Bz found  from  our  solution, while at the side 

boundaries BE is set  equal to zero. For cases with moving footpoints,  the  potential field 

must  be  computed at each time  step.  The  solution  for AP is calculated in Coulomb  gauge 

V - A P = O :  

V X BP = V X V X AP = -V2AP = 0. 

This  equation  is solved only for AP, and A;. We can  set A! to zero since J$' = 0 on the 

boundaries.  Boundary  conditions for AP, and A; are derived  from the specified BE and  the 

Coulomb  gauge  condition.  At x = 0 we have: 

To  automatically satisfy the  Coulomb  gauge  condition, we 

and  then solve Laplace's equation 

with null Dirichlet boundary  conditions $ = 0 ut x = 0, L, 

introduce  a 

; y = 0, L,. 

new variable 

At the x = 0, L, boundaries we set A; to  the value  found at the  bottom  boundary 

and derive the  Neumann  boundary  condition for AP, from the Coulomb  gauge: 

Similarly  at y = 0, L, we set A: to  the value found at the  bottom  boundary: 

dAP, 
- = By = 0; A:(x, x )  = AP,(x, 0); d x  
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and find the  Neumann  boundary  condition for AB from the  Coulomb gauge: 

dA; 8AP, 
- ( x , z )  = - -(x+) 
dY dX 

Finally, we calculate AP, and A; at the  top  boundary z = L, by  solving Eq. ( l l )  for $ with 

Neumann  boundary  conditions  taken  from  the  bottom  surface: 

a$ a$ a$ - = -(,=o at x = 0, L,; - aY 8 Y  
= -l,=o at y = 0, L, 

ax dx 

This finishes the specifications of the  problem for  solving V2Ap = 0 with  derived  boundary 

conditions. 

3. Simulation  Results 

3.1. Parallel Equal Flux Tubes 

First we investigate a cohelicity  case - two flux tubes of equal  strength  with  parallel 

axial fields B,. To check the influence of the  numerical  resistivity  on  the  solution, we 

performed  calculations  with  the  electrical  resistivity  set  to  zero,  corresponding to  the 

ideal MHD regime. The  footpoints were allowed to  move. The  attracting flux tubes  push 

against  each  other  forming  a  thin  line  current  anti-parallel  to  the  initial  current.  The 

tubes  continue  to  attract  until  the  line  current becomes so strong  that  its repulsive  force 

balances the  attractive force and  an  equilibrium is  reached. If the  grid is not fine enough, 

the  numerical  resistivity will lead to  “reconnection”.  Our  computational  tests show that 

the  medium  grid  (200x200~20) allows us to  avoid this  “numerical  reconnection” in the ideal 

MHD computations for times in  which the  system  reaches  equilibrium.  Further  tests of the 

influence of numerical  resistivity  are  presented  in the  Appendix. 

Results for the resistive calculation of equal  parallel flux tubes  with  moving  footpoints 

are  presented  in  Figs. 1-3 (Case l.a). Figure 1 shows traces of magnetic field lines at 
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different times  during  the  calculation.  The flux tubes  attract each other  and  reconnect 

along  the whole axial  length,  reaching a steady  state  solution  with a single  flux tube. As 

the flux tubes  approach each other,  the  twist  in  the flux tubes  gradually decreases. The 

twist in the final  flux tube is lower than  in  the  initial  configuration (see  from  Fig. 1). 

Figure 2 shows the  solution at the z = L,/2 midplane.  During  the  evolution to a  steady 

state,  the  diameter of the final  flux tube  gradually  increases to  about twice the  diameter 

of the  initial  tubes.  Thus  although  the  currents  add,  the  twist of final  flux tube is lower 

the  that of the  initial  tubes.  Figure 3 shows the  time evolution of magnetic  energy  (Curve 

1) and helicity (Curve 6) of the  system,  normalized to  their  initial values. Figure 3 also 

shows the  time  history of the changes  in the  plasma  thermal  (Curve 4) and  kinetic  (Curve 

5) energies, both normalized to  the  initial  magnetic  energy Eo. At the  end of the  run,  the 

plasma  kinetic  energy  has gone to  zero and  the increase  in  thermal  energy  equals  the loss of 

magnetic energy. 

The volume  integral of magnetic  energy B2/2p0 is  governed  by the following equation: 

The volume integral of (J x B) v is the work done  on  the  plasma by the  electromagnetic 

force, the volume  integral of qJ2 is  resistive dissipation which includes  reconnection,  and 

the surface  integral  in Eq.(13) is a Poynting’s flux through  the  boundaries.  The  Poynting’s 

flux is zero  for  cases with fixed footpoints. 

For Case l.a, 13% of the  initial  magnetic  energy  has  been  released, while the  magnetic 

helicity  declined  only by 1% in  the final steady  state,  as  can  be  seen by comparing  Curves 

1 and 6 in  Fig. 3. Until t N 12, magnetic  energy is  released mostly  through work done 

on  plasma by the  electromagnetic force (Curve 2 in  Fig. 3), and goes into  plasma  kinetic 

energy  (Curve 5 in  Fig.3).  This  kinetic  energy is  eventually  deposited  as  plasma  thermal 

energy  (Curve 4 in  Fig. 3 ) .  In  the final state  about 10% of the  initial  magnetic  energy 
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release is  through work  on the  plasma by the  electromagnetic force, and 3% is due  to 

resistive dissipation  (Curve 3 in Fig. 3).  The resistive dissipation  rapidly increases at 

t N 12 as the flux tubes  merge via  reconnection. As the  system goes to  an  equilibrium 

state,  the  magnetic energy is released mostly by the much  more gradual resistive dissipation 

associated  with  ordinary  Ohmic  dissipation  with  no  reconnection. No significant magnetic 

energy  and helicity flux through  the  top  and  bottom  boundaries is observed. The lower 

twist of the final flux tube  appears  somewhat  surprising since helicity  is nearly conserved. 

However, the final and  initial  state of the  system  has  the  same  amount of helicity since 

the  diameter of the final flux tube  with less twist is wider by about a factor of two than 

the  initial flux tubes  with  larger  twist  (Eq. 8). Thus  the final flux tube is  more  stable to 

the kink mode  than  the  initial  flux  tubes.  The  observational  studies of coronal structures 

provided  some  evidence  (Pevtsov & Canfield 1996) that in  cohelicity  reconnection of stable 

flux tubes,  the  twist  may  add  up  to  make  the final flux tube  unstable.  In  these  observations, 

however, a longer flux tube was created  from  reconnection at adjacent  footpoints of the two 

initial flux tubes so that  the overall length of the flux tube increased. We simulated a case 

in  which the axial  length of the final single flux  was constrained to be  the  same  length  as 

that of the  initial flux tubes. 

Results for parallel  equal flux tubes  with fixed footpoints  (Case  1.b)  are  presented in 

Figs. 4-5. Here  reconnection  takes place only  near the middle of the  domain,  as  can  be seen 

from the  magnetic field line  traces in  Fig. 4. The final magnetic field configuration  has two 

flux tubes  turning  around each other.  The  twist of the flux tubes  decreased, while magnetic 

helicity  declined by about 1% (Curve 6 in Fig. 4). The energy  and helicity time evolution 

in  Case 1.b  are  similar  to  Case 1.a with moving footpoints  (compare  Figs. 3 and 5). Even 

though  the  reconnection  takes place  only  in a small region for the  Case  l.b,  nearly  the  same 

amount of magnetic  energy  has been released as in Case 1.a. The  maximum  kinetic energy 

is less for Case  1.b  than for Case l.a, an  expected difference between  moving  and fixed 
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footpoints. 

3.2. Antiparallel equal flux tubes 

Next we investigate  the  interaction of two equal  strength flux tubes  and  antiparallel 

axial fields B,. In  this  case  both  poloidal  and  axial  magnetic field components  can 

reconnect.  Because the  flux  tubes have the  same  amount of twist but of opposite  sign, 

the  total  magnetic  helicity is  zero. Figures 6-8  show results for calculations  with  moving 

footpoints  (Case 2.a). The flux tubes  attract  and  annihilate  the  axial  magnetic field (Fig. 

6).  The overshoot of axial  magnetic field observed at t=32 in Fig. 6 is consistent  with 

experimental  results  (Yamada  et  ai.  1997).  During  the  simulation  the  helicity H stays 

equal  to zero (Fig.  7,  Curve  6), which is  consistent  with  a  final state  with  no B, due  to 

the reconnection  (Fig. 6). Note  that  in  the final state 20% of the  initial  magnetic  energy 

is left (Curve 1, Fig. 7), whereas  almost 100% of the  initial  magnetic  energy went into 

the  thermal  energy of plasma  (Curve 4, Fig.  7).  This  apparent  discrepancy is explained 

by a non-zero net  Poynting’s flux through  the  top  and  bottom  boundaries, which supplies 

additional  magnetic  energy  to  the  computational  domain. We believe that  the increase  in 

magnetic energy (Curve 1, Fig.  7)  at  t=25 is due  to  this  external  magnetic energy,  since it 

is absent for the  Case  2.b  with fixed footpoints  (Curve 1, Fig.  10).  Note  that  more of the 

initial  magnetic  energy is dissipated by  work on the  plasma by the  electromagnetic force 

than in the Case  1.a. For the  Case  2.a,  the  system  reaches a steady  state  more slowly and 

the kinetic  energy  (Curve  5,  Fig.  7)  is  more  prominent than for the Case 1.a. Strong flows 

with velocities greater  than  the  sound  speed  but less than VA can  be observed in  Fig.  8. 

These flows, which develop  in both  the X-Y plane  and  in  the Z direction,  subside as the 

solution reaches  a steady  state.  The final magnetic  configuration  (Fig. 6, t=270)  has no B,, 

i.e. the pressure of the poloidal  magnetic field is balanced by the high beta  plasma  pressure 
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within  the  tube - consistent  with  experimental  observations  (Fig. 6) (Yamada  et  al.  1997). 

Thus  the low-beta  initial  configuration  has  been  transformed  into a high-beta  configuration. 

The observed sausage  perturbations of the  plasma  pressure  in  Fig. 8 are  consistent  with  the 

perturbations allowed by a plasma  with  only a poloidal  magnetic field. 

The  results for antiparallel  equal flux tubes  with fixed footpoints  (Case  2.b)  are 

presented  in  Figs. 9-10. The flux tubes reconnect  in the  middle  and, as the  system evolves, 

the loops  unwind  (Fig.  9). The final state consists of two  arcs  attached  to  the  top  and 

bottom  boundaries.  These  two  arcs  are  untwisted  as  expected  since  the  total  magnetic 

helicity of the  system is  zero. In  this case,  no  magnetic  energy  is  supplied  through the 

boundaries.  In  the final state, 70% of initial  magnetic  energy  has  been  deposited as thermal 

energy and 30% is stored  in  the final magnetic  configuration  (Curves  1,4  in  Fig.  10).  Unlike 

the case with fixed footpoints  (Case  1.b),  the  plasma flows here  play  an  important role in 

the  system  evolution  (Curve 5, Fig.  10.). 

We have  also compared  the  rates of poloidal  magnetic field reconnection for 

counterhelicity  (Case 2.a) and cohelicity  (Case 1.a) simulations  with  moving  footpoints. 

To  describe the reconnection  quantitatively, we study  the  time  evolution of A, contours  in 

X-Y  midplane  (Fig. 11). Here A, is a flux $ function for the poloidal  component of the 

magnetic field. Let  us define $, as the value of the common  flux in  the  center of the X-Y 

plane,  and gP as  the  peak flux of each tube.  The  ratio of a, = $,/.ICp is plotted in Fig. 

12.  Complete  reconnection  corresponds to  a, = 1. The reconnection  proceeds  faster for 

counterhelicity than for  cohelicity, consistent  with  experiments  (Yamada  et  al.  1997).  The 

time derivative of $, is the reconnection rate of poloidal  magnetic field. The reconnection 

rate was calculated in the  linear  growth  phase  (Fig. 12) between t=5  and  t=20 for both 

cohelicity and counterhelicity  cases.  For the cohelicity  case the reconnection rate is 0.06, 

while for the counterhelicity  case the  rate is 0.11. We can  compare  these values with  the 
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Sweet-Parker and Petschek  models of steady  reconnection for a one-dimensional  current 

sheets.  The  reconnection  rate $ s p  for the Sweet-Parker  model  is 

where Be is the  magnitude of the reconnected  magnetic  field, and So is  the  corresponding 

Lundquist  number (Sweet 1958; Parker  1963).  The  Sweet-Parker  model  assumes 

reconnection  proceeds  in a region with a length  about  the  macroscopic size of the  system, 

and is  usually  referred  as slow reconnection.  In  contrast,  the  Petschek  model  assumes  that 

reconnection  is  localized  in a region much smaller  than  the  macroscopic  spatial  scale,  and 

is known as a fast-reconnection  model  (Petschek  1964).  Both  models  assume  steady-state 

reconnection. The reconnection rate $p for the Petschek  model  is  given  by 

a$ 
at 
- = $ p  N uABe(ln so)-] 

Substituting  our  parameters UA = 1, B e  = 1 and So = lo3 into  the  above expressions, we 

obtain $ i p  N 0.033 and 4 p  N 0.147. Thus  our  computed  reconnection  rates  fall between 

those  predicted by the Sweet-Parker and Petschek  models.  Note however, that  ours is not a 

steady-state  reconnection  rate. 

For the case  with  parallel  flux  tubes, the  time scale for both reconnection and  relaxation 

to  a steady  state  are  about  the  same - a few tens of TA. In  contrast,  the  evolution  to  steady 

state is  considerably slower for the case of antiparallel flux tubes  because of the  strong 

supersonic  (but  subalfvenic) flows developing  during  reconnection. 

3.3. Nonequal Antiparallel flux tubes 

Here we investigate  the  reconnection of two flux tubes  with  opposite  axial  magnetic 

fields and a 10% difference  in Bo in  the Gold-Hoyle  flux tubes (see  Sec. 2.2). 
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Results for a case  with  moving  footpoints  case  are  presented  in  Figs. 13-14 (Case 

3.8). The  steady  state  magnetic  configuration  has a substantial  nonuniform  distribution 

of magnetic field on X-Y midplane  (Fig. 13). One  can  observe significant qualitative 

differences  between this  simulation  and  Case 2.a with  equal  antiparallel flux tubes. At 

t=24,  Fig. 13 shows an overshoot  in  axial  magnetic field similar t o  Case  2.a. However, the 

magnetic flux tubes  then  separates  into  three  tubes,  one  having B, and J ,  in  the  opposite 

direction  from  the  others (see t=100,  Fig.  13).  This  configuration of fields and  currents 

seems to  increase the  rate of the resistive dissipation of helicity,  i.e. the 7 J J - BdV term  in 

Eq. (11). The two  flux tubes  with  positive  “orientation” seem to reconnect  poloidal field 

with each other (see t=100  and  t=226,  Fig. 13). In  the  steady  state  (t=226  in  Fig.  13), 

there is a region in  the  center of the  domain  with a very strong By component, which is 

absent at the  same  time  for  Case 3.a (Fig.  6).  This  is a remarkable  qualitative difference 

given only a 10%  change  in the  magnitude of one  flux tube.  There is a significant  Poynting’s 

flux through  the  top  and  bottom  surfaces,  apparently  increasing  the  magnetic  energy by 

30% of its  initial  value Eo, since  in  steady  state  the  thermal  energy  (Curve 4, Fig.  14) 

increased  by  110% of Eo, while 20% of the  initial  magnetic  energy  (Curve 2) is stored in 

the final magnetic  configuration. Between t=150  and  t=250  the  magnetic  helicity  drops 

sharply by 40% (Curve 6, Fig.  14).  This is comparable  with  the  percentage  drop of the 

magnetic  energy  in  the  same  time  period.  Note,  that  the  helicity is  normalized to  its  initial 

value; the  absolute  value of the helicity  is small  compared to  Cases 1.a and  1.b. 

In  the fixed footpoints  non-equal  antiparallel  simulations  (Case  3.b),  the final magnetic 

field configuration  is  similar to  the case with  equal  antiparallel  flux  tubes:  two arc-like 

structures  as shown in  Fig. 9. The  magnetic  energy  (Curve 6) and helicity  (Curve 4) 

evolution  are  shown  in  Fig.  15. An interesting  feature of this  simulation is that  the 

dissipation  rates of helicity  and  energy  are  comparable.  In  the  final  steady  state, 40% of 

helicity and 60% of magnetic  energy have dissipated. 
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4. Conclusions 

We have presented  results  from  the first 3-D resistive MHD computations which follow 

the  interaction of Gold-Hoyle  flux tubes  to a final steady  state. We followed the  time 

evolution of energy and helicity of the  system  and  obtained  qualitative  agreement  with 

experimental  results  (Yamada  et  al. 1997) on 3-D magnetic  reconnection. The reconnection 

proceeds  faster  in  counterhelicity than  in cohelicity  merging. The poloidal  magnetic field 

reconnection  rates  are  between  those  predicted by the Sweet-Parker and Petschek  models. 

Cases with fixed footpoints  had lower magnetic  energy release and reached a steady  state 

faster  than cases with  moving  footpoints.  The final flux tube in  cohelicity  reconnection  is 

more  stable to  the kink mode  than  the  initial flux tube. For antiparallel flux tubes  with 

moving footpoints, we observed a significant  energy flux through  the  boundaries. For all 

computed  cases,  magnetic  energy is  released primarily  through work done  on  the  plasma 

by the  electromagnetic forces rather  than  through resistive dissipation.  These forces create 

plasma flows which are finally deposited  in  the  plasma  as  thermal energy. We found  that 

plasma  pressure  is  important for the  relaxation of the  system  to final equilibrium even for 

low-beta  initial  conditions,  and  it is  necessary to  include  these effects in the  simulations. 

We found a large  qualitative difference  between the  solutions for equal  antiparallel flux 

tubes  and  tube differing in  strength by only lo%, in  agreement  with  experiment  (Yamada, 

1998). For the first  time we have calculated  numerically a gauge  invariant  relative  magnetic 

helicity of the  system  and  compared  its  evolution for all  computed cases. We observed that 

the resistive dissipation  rate of helicity may  vary significantly for different computational 

cases, and  be  comparable  with  energy  dissipation. 
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Appendix 

The  MAP3  code  has  been  tested on the MHD problem of the  stability of solar  coronal 

loops.  An  isolated  Gold-Hoyle  flux tube  can  be  stable  or  unstable  to  the  kink  mode 

depending  on  the  twist of the field and  the  plasma  beta.  From a series of runs  with  various 

twists, we computed  the  twist  threshold (a X 2 . 5 ~ )  and a normalized  growth  rate YTA 

for kink  unstable  Gold-Hoyle flux tubes  (see Fig.16) and  obtained  satisfactory  agreement 

with  earlier  calculations  (Mikic et al.  1990). To investigate the influence of the  numerical 

resistivity, we compared  the  time  evolution of the  magnetic  helicity for three different  grids 

and for two different  values of S (Fig. 17). The  top two Curves  3  and 4 are for the  medium 

and fine  grid computation  with S = lo3. The  bottom two Curves 1 and 2 are for S = 3 .  lo2.  

The  numerical  resistivity  decreases as the grid is refined. As one  can  see,  changing S has 

far  greater  influence on the solution than  changing  from  one  grid to another. We conclude 

that we can  study  physical  phenomena  with S = lo3 on a  medium  or fine grid. 
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Figure Captions 

Figure 1: Time  evolution of magnetic field line traces for equal  parallel  flux  tubes  with 

moving footpoints  (Case 1.a) - cohelicity. In  this case  only  poloidal magnetic  flux  reconnects. 

Figure 2: Plots of magnetic  vector (Bz,  BY) field and  contours of B, in X-Y midplane for 

equal  parallel flux tubes  with  moving  footpoints  (Case 1.a). 

Figure 3: Time  evolution for equal  parallel flux tubes  with moving footpoints  (Case  1.a): 

1- magnetic  energy E/Eo, 2-magnetic  energy release through work by electromagnetic 

force,  3-magnetic  energy  release  through to  Ohmic  dissipation, 4-change in  thermal  energy 

Eth/Eo, 5-change in  kinetic  energy Ek/Eo, 6- helicity H/Ho.  Note  that at early  times, much 

of the  magnetic  energy goes into  plasma  kinetic energy. The  kinetic  energy  tends to  zero as 

steady  state is  reached. By the  end of the  run,  all  the released magnetic  energy  has  been 

deposited  in  the  plasma  as  thermal energy. 

Figure 4: Time  evolution of magnetic field line  traces for equal  parallel flux tubes  with fixed 

footpoints  (Case  1.b). 

Figure 5: Time evolution for equal  parallel flux tubes  with fixed footpoints  (Case  1.b): 1- 

magnetic  energy E/Eo, 2-magnetic  energy  release  due to work by electromagnetic force, 

3-magnetic  energy  release  due to  Ohmic  dissipation , 4-change in  thermal  energy Eth/Eo, 

5-change in  kinetic  energy &/Eo, 6- helicity H / H o .  

Figure 6: Plots of magnetic  vector field and  contours of B, in X-Y midplane for equal 

antiparallel flux tubes  with  moving  footpoints - counterhelicity,  Case  2.a. 
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Figure 7: Time  evolution for equal  antiparallel flux tubes  with  moving  fQotpoints  (Case 

2.a):  1-magnetic  energy E/Eo, 2-magnetic  energy  release  due to  work  by electromagnetic 

force,  3-magnetic  energy  release due  to  Ohmic  dissipation , 4-change  in thermal  energy 

Eth/Eo, 5-change in  kinetic  energy Ek/Eo, 6- helicity H/Ho.  

Figure 8: Plots of  flow vector field and pressure  contours in X-Z midplane for equal 

antiparallel flux tubes  with  moving  footpoints  (Case 2.a). 

Figure 9: Time  evolution of magnetic field line  traces for equal  antiparallel flux tubes  with 

fixed footpoints  (Case  2.b). 

Figure 10: Time  evolution for equal  antiparallel flux tubes  with fixed footpoints  (Case  2.b): 

1-magnetic  energy E/Eo, 2-magnetic  energy release due  to work by electromagnetic  force, 

3-magnetic  energy  release  due to  Ohmic  dissipation , 4-change in  thermal  energy Eth/Eo, 

5-change in  kinetic  energy Ek/Eo, 6- helicity H/Ho. 

Figure 11: A, contours  in  the  x-y  midplane for equal  antiparallel  flux  tubes  with  moving 

footpoints. 

Figure 12: Comparison of reconnection  rates for  cohelicity  and  counterhelicity cases. 

Figure 13: Plots of magnetic  vector field and  contours of B, in X-Y midplane for nonequal 

antiparallel flux tubes  with  moving  footpoints  (Case 3.a). 

Figure 14: Time  evolution for nonequal  antiparallel  flux  tubes  with  moving  footpoints  (Case 

3.a): 1-magnetic  energy E / E o ,  2-magnetic  energy  release  due to work  by electromagnetic 
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force,  3-magnetic  energy  release  due to Ohmic  dissipation , 4-change in  thermal  energy 

Eth/Eo, 5-change  in kinetic  energy Ek/Eo, 6- helicity H / H o .  

Figure 15: Time  evolution for nonequal  antiparallel flux tubes  with fixed footpoints  (Case 

3.b):l-magnetic  energy E/Eo, 2-magnetic  energy  release  due to  the work  by electromagnetic 

force,  3-magnetic  energy  release  due to  Ohmic  dissipation , 4-change in  thermal  energy 

Eth/Eo, 5-change in  kinetic  energy &/EO, 6- helicity H/Ho. Note  that  in  this  case  the 

absolute value of HO is much less than  in  Cases la,  lb .  

Figure  16.  Growth  rate vs. twist for unstable Gold-Hoyle  flux tube: 1- MAP3  result, 2- 

Mikic et  al. 1990. 

Figure.  17 : Time  evolution of helicity  for  different grids  and different  values of input 

physical  resistivity: 1- coarse  grid and S = 3 lo2, 2- medium  grid  and S = 3 - l o2 ,  3- 

medium  grid  and S = lo3, 4- fine  grid and S = lo3. 
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